
MEMSET 1
ID: 771-BSI | Version: 2 | Date: 5/16/08 2:39:26 PM

MEMSET
Using memset to scrub sensitive data in memory does not usually work unless the data is used subsequently.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-03-29

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5445 bytes

Attack Category • Memory Scanning

Vulnerability Category • Compiler Optimization

• Information Leakage

Software Context • Memory Management

• Cryptography

Location

Description Using memset to scrub sensitive data in memory
(where the memory is subject to dead-store removal
optimization) does not usually work unless the data
is used subsequently.

The memset() function sets the bytes in a block
of memory to the specified value. It may seem
sensible to use this to zero out memory containing
sensitive data after that data is no longer needed.
However, most compilers will simply omit the
memset call from object code as an "optimization."
If the memory is zeroized and is never accessed
afterwards, the compiler sees it as an unnecessary
assignment. This is problematic for data such as
cryptographic keys that need to be removed from
memory after use.

APIs Function Name Comments

memset

Method of Attack

Exception Criteria The false positive rate can potentially be limited
through the following:

x=malloc(z)
memset(x,0,z)

Where the memset immediately follows a malloc,
the memory should contain no sensitive data.
Therefore, the memset will not usually be optimized
away (unless the memory was pointlessly allocated,

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html

MEMSET 2
ID: 771-BSI | Version: 2 | Date: 5/16/08 2:39:26 PM

it is reasonable to expect that it will eventually be
read or written to after the memset call).

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

All platforms. There are three
ways to avoid
having the
memset call
optimized
out by the
compiler. The
first is to access
the buffer
again after the
memset call
in a way that
would force the
compiler not
to optimize the
location. This
can be achieved
by

memset(buffer,
0,
sizeof(buffer));
*(volatile
char*)buffer
= *(volatile
char*)buffer;

Solution should
be effective on
most platforms,
but consult
platform
documentation
to verify that
it suffices to
reference one
character in this
fashion.

Windows and
other platforms
that provide a
secure method
for zeroing
memory.

A second
solution is to
replace the
memset call
with other code
that will not
be optimized
out. Newer
versions of the
Platform SDK
on Windows
include a
function called
SecureZeroMemory
that will zero
out a buffer
in a way that
will not be
optimized.

Effective.
Preferred
solution, when
available.

Windows and
other platforms
that provide

A third solution
is to turn off
optimizations

Effective.

MEMSET 3
ID: 771-BSI | Version: 2 | Date: 5/16/08 2:39:26 PM

a means of
controlling
compiler
optimization.

for the code in
question. With
the Microsoft
cl compiler
you can do
this by placing
the following
pragma at
the top of the
source file:

#pragma
optimize("g",
off)

Or you could
surround the
function calls in
question with

#pragma
optimize("",
off)

and

#pragma
optimize("", on)

to turn off
optimization
for a particular
section of code.

Signature Details void *memset(void * buffer, int c, size_t num)

Examples of Incorrect Code [...]
memset(key, 0, 32);
[...]

Examples of Corrected Code [...]
void *secureMemset(void *v,int
c,size_t n) {
volatile char *p = v;
while (n--)
*p++ = c;
return v;
}
[...]
secureMemset(key, 0, 32);
[...]

Source Reference • Howard, Michael. "Some Bad News and Some

Good News2" (MSDN Library article).

Recommended Resource

Discriminant Set Operating Systems • UNIX

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp

MEMSET 4
ID: 771-BSI | Version: 2 | Date: 5/16/08 2:39:26 PM

• Windows

Language

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

